		Page 25 of 34
	Appendix G	
NUCLEAR WASTE MANAGEMENT Sandia National Laboratories	User's Manual Criteria For	Torm Number: NP 19-1-6 Page 1 of 1
 Software Name: Software Version Document Version ERMS #: 	on: <u>1.00</u> 524780	
or " N/A " may be checke 5. A statement(s) of	Jser's Manual, all items shall be appropriately addressed by the ed. Include this form as part of the User's Manual. f functional requirements (consistent RD) and system limitations?	e code sponsor so that " Yes "
6. An explanation of	f the mathematical model and s, where applicable as based on code functionality?	🗹 Yes 🗌 N/A
Physical and mat based on code full	thematical assumptions, where applicable as unctionality?	Yes Y N/A
	and limitations inherent in the software? describe the user's interaction with the	Iv Yes Iv Yes
software? 10. The identificatior	n of input parameters, formats, and valid ranges?	V Yes
11. Messages initiate the user can resp	ed as a result of improper input and how bond?	Yes
13. A description of a	n and description of output specifications and formats? any required training necessary to use the software? n of components of the code that were not tested?	I⊉r Yes I⊉r Yes I⊒r Yes
Code Team/S 16. JW GARN	LORD David L. Lord Sponsor (print) Signature VER USame eviewer (print) Signature	$\frac{i0/2/2003}{Date}$
17. David 14eg Responsible 18. Jennifer	Manager (print) Long rdinator (print) Aignature	$\frac{\frac{10/2/03}{\text{Date}}}{\frac{10/603}{\text{Date}}}$

NP 19-1 **Revision 10**

Key for check boxes above:

3 <u>_</u>*__

Software Requirements

16

ଚ

Check Yes for each item reviewed and found acceptable		
Check N/A for items not applicable, where applicable as based on code function	onality	

Information Only

dignature

Q

WIPP PA

31

ń

USER'S MANUAL

for

DRSPALL Version 1.00

Document Version 1.00

ERMS# 524780

October 2003

¢'

•

ţ.

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	4
1.1	Software Identifier	
1.2	POINTS OF CONTACT	
1.3	CODE OVERVIEW	
2.0	FUNCTIONAL REQUIREMENTS	
2.1	FUNCTIONAL REQUIREMENTS	6
2.2	EXTERNAL INTERFACE REQUIREMENTS	6
2.3	ADDITIONAL FUNCTIONALITY TO BE TESTED	
2.4	FUNCTIONALITY NOT TESTED	
3.0	REQUIRED USER TRAINING AND/OR BACKGROUND	
4.0	THEORETICAL BASIS	9
5.0	MATHEMATICAL MODEL	.9
6.0	CAPABILITIES AND LIMITATIONS OF THE SOFTWARE	10
7.0	USER INTERACTIONS WITH THE SOFTWARE	11
/.0	USER INTERACTIONS WITH THE SOT I WITHE	
7.0 8.0	DESCRIPTION OF INPUT FILES	
	DESCRIPTION OF INPUT FILES ¹ The Input Control File ¹	12 16
8.0	DESCRIPTION OF INPUT FILES	12 16
8.0 8.1	DESCRIPTION OF INPUT FILES ¹ The Input Control File ¹	12 16 20
8.0 8.1 8.2	DESCRIPTION OF INPUT FILES	12 16 20 21 21
8.0 8.1 8.2 9.0 9.1 9.2	DESCRIPTION OF INPUT FILES	12 16 20 21 21 22
8.0 8.1 8.2 9.0 9.1	DESCRIPTION OF INPUT FILES	12 16 20 21 21 22 24
8.0 8.1 8.2 9.0 9.1 9.2	DESCRIPTION OF INPUT FILES	12 16 20 21 21 22 24
8.0 8.1 8.2 9.0 9.1 9.2 9.3	DESCRIPTION OF INPUT FILES	12 16 20 21 21 22 24 25 25
8.0 8.1 8.2 9.0 9.1 9.2 9.3 10.0 10.1 10.2	DESCRIPTION OF INPUT FILES	12 16 20 21 21 22 24 25 25 25
8.0 8.1 8.2 9.0 9.1 9.2 9.3 10.0 10.1 10.2 10	DESCRIPTION OF INPUT FILES. 1 THE INPUT CONTROL FILE. 1 THE INPUT CAMDAT FILE. 1 ERROR MESSAGES. 1 FILE ASSIGNMENT ERRORS. 1 INPUT CONTROL FILE ERRORS. 1 EXECUTION ERRORS. 1 DESCRIPTION OF OUTPUT FILES 1 THE OUTPUT DIAGNOSTICS FILE. 1 THE OUTPUT CAMDAT FILE 1 0.2.1 Output CAMDAT Materials and Mesh	12 16 20 21 21 22 24 25 25 25 25
8.0 8.1 8.2 9.0 9.1 9.2 9.3 10.0 10.1 10.2 10	DESCRIPTION OF INPUT FILES. THE INPUT CONTROL FILE. THE INPUT CAMDAT FILE. THE INPUT CAMDAT FILE. ERROR MESSAGES. FILE ASSIGNMENT ERRORS. INPUT CONTROL FILE ERRORS. EXECUTION ERRORS. DESCRIPTION OF OUTPUT FILES THE OUTPUT DIAGNOSTICS FILE. THE OUTPUT CAMDAT FILE THE OUTPUT CAMDAT FILE. 0.2.1 Output CAMDAT Materials and Mesh. 0.2.2 Output CAMDAT Properties	12 16 20 21 21 22 24 25 25 25 25 26
8.0 8.1 8.2 9.0 9.1 9.2 9.3 10.0 10.1 10.2 10	DESCRIPTION OF INPUT FILES. 1 THE INPUT CONTROL FILE. 1 THE INPUT CAMDAT FILE. 1 ERROR MESSAGES. 1 FILE ASSIGNMENT ERRORS. 1 INPUT CONTROL FILE ERRORS. 1 EXECUTION ERRORS. 1 DESCRIPTION OF OUTPUT FILES 1 THE OUTPUT DIAGNOSTICS FILE. 1 THE OUTPUT CAMDAT FILE 1 0.2.1 Output CAMDAT Materials and Mesh	12 16 20 21 21 22 24 25 25 25 26 28

e³

* <u>*</u>

1

Page

LIST OF FIGURES

		Page
FIGURE 8-1	EXAMPLE DRSPALL INPUT CONTROL FILE	18

LIST OF TABLES

TABLE 8-1 DR	SPALL INPUT PARAMETERS 1	3
TABLE 10-1 C/	AMDAT MATERIALS AND ELEMENTS	25
TABLE 10-7 C/	AMDAT OUTPUT PROPERTIES	6
TABLE 10 2 C/	AMDAT HISTORY VARIABLES	28
	AMDAT ELEMENT VARIABLES	

p)

÷.,

1.0 INTRODUCTION

This document serves as a User's Manual for the DRSPALL program as used in the Waste Isolation Pilot Plant (WIPP) Performance Assessment (PA) calculation. As such, it describes the purpose and function of the DRSPALL program and the user's interaction with it.

1.1 Software Identifier

Code Name:	DRSPALL
Version:	1.00
WIPP Prefix:	DRS
Platform:	Compaq Fortran on OpenVMS V7.3-1 Alpha

1.2 Points of Contact

Code Sponsor:	David L. Lord Performance Assessment & Decision Analysis Dept. Carlsbad Programs Group Sandia National Laboratories Voice: (505)234-0055 Fax: (505)234-0061 dllord@sandia.gov
Code Consultants:	John Schatz John F. Schatz Research & Consulting, Inc. Del Mar, CA 92014 Voice: (858)792-7410 Fax: (858)860-2432
	David K. Rudeen GRAM, Inc., Suite B335 Albuquerque, NM 87112 Voice: (505)998-0046 Fax: (505)296-3289 dkrudee@sandia.gov

1.3 Code Overview

DRSPALL is written to calculate the volume of WIPP solid waste subject to material failure and transport to the surface as a result of an inadvertent drilling intrusion. The code calculates coupled repository and wellbore transient multi-phase compressible fluid flow before, during, and after the drilling intrusion process. Mathematical models are included for bit penetration, multi-phase (mud, salt, waste, and gas) fluid flow in the well, fluid expulsion at the surface, coupling of the well and the drilled repository, repository spalling (tensile) failure, fluidized bed

ê . B

1

 \mathcal{L}^{1}

transport of failed waste, and repository internal gas flow. The wellbore model is onedimensional with linear flow, while the repository model is one-dimensional with either spherical or cylindrical flow.

2.0 FUNCTIONAL REQUIREMENTS

The requirements for DRSPALL are listed in the WIPP PA Requirements Document for DRSPALL Version 1.00. The additional functionality to be tested and the functionality not tested are listed in the WIPP PA Verification and Validation Plan and Validation Document for DRSPALL Version 1.00. The requirements and functionality are repeated here for the reader's convenience.

2.1 Functional Requirements

In general DRSPALL shall calculate the volume of WIPP waste subject to material failure and transport to the surface as a result of an inadvertent drilling intrusion into the repository. More specifically DRSPALL will calculate the following:

- **R.1** Compressible, viscous, isothermal, multiphase mixture flow (mud, salt, waste, repository gas) in the wellbore using one dimensional linear geometry and assuming a Newtonian fluid. Either laminar or turbulent flow shall be modeled depending on wellbore and fluid properties.
- **R.2** Repository gas flow as single-phase Darcy porous flow using either one dimensional cylindrical or spherical geometry
- **R.3** Coupling of the wellbore and the repository flow models prior to and after penetration
- **R.4** Spalling (tensile) failure of the homogeneous waste material using an effective stress law with seepage forces
- **R.5** Fluidized bed transport of failed (disaggregated) waste material.
- **R.6** Mixture expulsion at the surface

2.2 External Interface Requirements

- **R.7** DRSPALL shall read an input control file, which may be pre-generated using a text processor. It will contain numerical control parameters and, optionally, material properties and problem geometry.
- **R.8** Properties and non-numerical control parameters will, optionally, be read from a CDB.
- **R.9** Grid, properties, parameters and spatial and time dependent results will be written to an output CDB.

ε.

.

2.3 Additional Functionality To Be Tested

No additional functionality will be tested.

2.4 Functionality Not Tested

All functionality represented by requirements will be tested.

3.0 REQUIRED USER TRAINING AND/OR BACKGROUND

To exercise DRSPALL, users should have basic knowledge of OpenVMS and Digital Command Language, and access to the WIPP cluster of Compaq Alpha computers with the OpenVMS operating system or their functional equivalents.

Because DRSPALL manipulates a CAMDAT database, users should have an understanding of the CAMDAT terminology and contents. For a detailed description of the CAMDAT database, refer to Chapter 7 of the WIPP PA User's Manual for CAMDAT_LIB Version 1.22.

It is highly recommended that the new user read the WIPP PA Design Document for DRSPALL Version 1.10 before setting up and executing DRSPALL. DRSPALL's conceptual and mathematical models rely on the conservation of wellbore surface area to equivalence the twodimensional real-world problem to the 1-dimensional cylindrical or spherical model geometry. Understanding these concepts as well as the WIPP PA specific application is essential for proper execution of the code.

4.0 THEORETICAL BASIS

The theoretical basis for DRSPALL is explained in detail in the WIPP PA Design Document for DRSPALL Version 1.00.

5.0 MATHEMATICAL MODEL

The mathematical model for DRSPALL is explained in detail in the WIPP PA Design Document for DRSPALL Version 1.00.

6.0 CAPABILITIES AND LIMITATIONS OF THE SOFTWARE

DRSPALL (from Direct Release Spall) is written to calculate the volume of WIPP solid waste subject to material failure and transport to the surface as a result of an inadvertent drilling intrusion. The code calculates coupled repository and wellbore transient mixed-phase compressible fluid flow before, during, and after the drilling intrusion process. Mathematical models are included of bit penetration, mixed-phase (mud, salt, waste, and gas) fluid flow in the well, fluid expulsion at the surface, coupling of the well and the drilled repository, repository spalling (tensile) failure, fluidized bed transport of failed waste, and repository internal gas flow. The wellbore model is one-dimensional with linear flow, while the repository model is onedimensional with either spherical or cylindrical radial flow. Flow in the well is treated as a compressible, viscous, multi-phase mixture of mud, gas, salt, and possibly waste solids. Flow in the repository is treated as viscous, compressible single-phase gas flow in a porous solid

DRSPALL was developed specifically for calculating the volume of WIPP solid waste subject to material failure and transport to the surface as a result of an inadvertent drilling intrusion. Therefore, many input parameters have been bounded to ranges established for WIPP specific materials, WIPP repository geometry and standard drilling practices in the Delaware basin and are documented in the *Parameter Justification Report* (Hansen, et al., 2003). Specific parameters and ranges are tabulated in Section 8.0, Table 8-1.

7.0 USER INTERACTIONS WITH THE SOFTWARE

DRSPALL executes on a Compaq Alpha under OpenVMS. To execute DRSPALL, type DRSPALL at the OpenVMS system "\$" prompt and press the carriage-return key. The names of four files and one text string will be requested sequentially by DRSPALL. Alternately, the user may append the names of the files and the text string (in order) to the DRSPALL command line before pressing the carriage-return key. The required information is as follows:

- 1. The input control file. This required file sets the values for the problem specification parameters. If an input CAMDAT file is specified, the parameters may be read from CAMDAT properties specified in the input control file. The input control file is described in Section 8.1.
- 2. The output diagnostics file. This file contains a listing of the input control file and the input problem specification parameters. The output diagnostics file is described in Section 10.1.
- 3. An optional input CAMDAT file. This file contains certain problem specification parameters, defined as properties and referenced by the input control file. If the user enters "CANCEL", all input must come from the input control file. The input CAMDAT file is described in Section 8.2.
- 4. An output CAMDAT file. This file contains the results of the DRSPALL execution. The output CAMDAT file is described in Section 10.2.

8.0 DESCRIPTION OF INPUT FILES

DRSPALL inputs a set of problem specification parameters from the input control file. The format of the input control file is described in Section 8.1. If an input CAMDAT file is specified as described in Section 7.0, the input control file may reference values from the input CAMDAT file. The format of the input CAMDAT file is described in Section 8.2.

The DRSPALL input parameters are listed in **Table 8-1**, along with their default values, units, and range. The input parameters should be self-explanatory. More information is available in the WIPP PA Design Document for DRSPALL Version 1.00. The parameters are grouped into categories (e.g., Repository, Waste). All numeric parameters are double-precision real numbers, unless otherwise noted.

The input parameters are listed twice in the output diagnostics file, described in Section 10.1. The first listing is a direct echo of the input control file. The second listing writes the values that are being used by DRSPALL. If there is an error in the input parameters, it will be reflected in the second listing.

ŝз г

Category and Parameters	Units	CAMDAT*	Default	Range
REPOSITORY				
Land elevation	m	YES	1037.3	900.0 - 1100.0
Repository top	m	YES	385.31	300.0 - 500.0
Repository thickness	m	YES	0.0	0.0 - calculated internally 1.0 - 2.0 use specified value
DRZ [#] thickness	m	YES	0.85	0.1 - 1.0
DRZ permeability	m ²	YES	1.0e-15	1.0e-21 – 1.0e-12; < DDZ Permeability
Outer radius	m	YES	19.2	10.0 – 50.0; > 0.5 * Bit Diameter
Initial gas pressure	Pa	YES	14.5e6	6.0e6 – 15.0e6; ≤ far-field in-situ stress
Far-field In-Situ Stress	Pa	YES	14.8e6	14.0e6 - 15.0e6
WASTE	Second 1			
Repository initial porosity	_	YES	0.575	0.20 - 0.85
Repository initial permeability	m ²	YES	1.7e-13	1.0e-17 – 1.0e-12
Forchheimer beta		YES	1.15e-6	1.0e-12 - 1.0e-4
Biot beta	-	YES	1.0	0.5 - 1.0
Poisson's ratio	-	YES	0.35	0.2 - 0.4
Cohesion	Pa	YES	1.23e5	1.0e4 – 1.0e7
Friction angle	deg	YES	45.0	30.0 - 60.0
Tensile strength	Pa	YES	6895.0	6.89e3 - 6.91e6
Characteristic failure length		YES	0.02	0.0 - 0.1
Particle diameter	m	YES	0.001	0.001 – 0.01; < Bit Diameter
Gas viscosity	Pa-s	YES	10.0e-6	1.0e-6 - 1.0e-4
MUD				
Initial mud density	kg/m ³	YES	1210.0	1000.0 - 1500.0
Mud viscosity	Pa-s	YES	0.01	1.0e-4 – 1.0e-1
Wall roughness pipe	m	YES	0.5e-5	1.0e-14 – 1.0e-2
Wall roughness annulus	m	YES	0.5e-5	1.0e-14 – 1.0e-2
Max mud solids vol. Fraction	-	YES	0.6	0.5 - 0.8
Mud solids viscosity exponent	_	YES	-1.8	-2.01.2
WELLBORE/DRILLING				
Bit diameter	m	YES	0.3112	0.25 – 1.32
Pipe diameter	m	YES	0.1143	0.1 – 0.15; < Bit Diameter
Collar diameter	m	YES	0.2032	0.15 – 0.25; > Pipe Diameter, < Bit Diameter
Pipe inside diameter	m	YES	0.1005	0.08 – 0.13; < Pipe Diameter
Collar length	m	YES	182.9	0.0 – 250.0

Table 8-1 DRSPALL Input Parameters

÷-2-

. 4

Category and Parameters	Units	CAMDAT*	Default	Range
Exit pipe length	m	YES	15.24	0-25.0
Exit pipe diameter	m	YES	0.0508	0.0254 - 0.3048
Drilling rate	m/s	YES	0.005	0.0 - 0.01
Initial bit height above repository	m	YES	0.15	0.01 - 1.0
Mud pumping rate	m ³ /s	YES	0.021443	0.001 - 0.1
Maximum pump pressure	Pa	YES	27.5e6	1.0e5 - 100.0e6
DDZ [#] thickness	m	YES	0.15	0.1 – 0.3
DDZ permeability	m ²	YES	1.0e-14	1.0e-21 – 1.0e-12; > DRZ Permeability
Stop drilling exit volume rate	m ³ /s	YES	1000.0	0.05 - 2000.0
Stop pumping exit volume rate	m ³ /s	YES	1000.0	1.0 - 2000.0
Stop drilling time	S	YES	1000.0	≥0
COMPUTATIONAL				
Spherical / Cylindrical	_	NO	S	S or C (Spherical or Cylindrical)
Allow fluidization	-	NO	Y	Y or N or A (Yes, No or Always)
Maximum run time	s	NR	900.0	>0
Repository zone size	m	NR	0.002	>0
Region of constant zone size, zone Growth Rate	m, –	NO	0.5, 1.01	>0.0, ≥ 1.0
Wellbore zone size	m	NR	2.0	>0
Wellbore zone growth rate	_	NR	1.01	≥1.0
First wellbore zone	_	NR	2	1 – model inside pipe >1 – model annulus only
Well stability factor		NR	0.1	<1.0
Repository stability factor	-	NR	5.0	>0.0
Mass diffusion factor	-	NR	0.02	0 - 0.05 (0.002 recommended)
Momentum diffusion factor		NR	0.002	0-0.05
VALIDATION	Option Verificatio	al Category to ru n and Validation	n validation tests de n Plan and Validati Version 1.004	escribed in the WIPP PA
Validation Test Case	-	NR	0.0	testcase. subcase (see VVP/VD)
PARAMETERS AND CONSTANTS			Optional Category	
Pi	-	YES	3.14159263589 793	-
Atmospheric Pressure	Pa	YES	101300.0	
Gravity	m/s ²	YES	9.8067	<u> </u>
Gas Constant	J/kg K	YES	4124.0	
Repository Temperature	K	YES	300.0	
Water Compressibility	1/Pa	YES	3.1e-10	<u> </u>
Waste Density	kg/m ³	YES	2650.0	
Salt Density	kg/m ³	YES	2201.0	
Shape Factor	-	YES	1.0	-0 < x ≤1.0
Tensile Velocity	m/s	YES	1000.0	_

Category and Parameters	Units	CAMDAT*	Default	Range
Bit Nozzle Number	-	YES	3.0	_
Bit Nozzle Diameter	m	YES	0.011112	-
Choke Efficiency	_	YES	0.9	$0 < x \le 1.0$
的现在分词 计算法 化合金合金 化合金合金	Coptional P	arameters – high	lighted characters r	nust be specified in text field
INITIAL CAVITY RADIUS	m	YES	0.0	=0 – calculated internally >0.0 – use specified value
MINIMUM CHARacteristic Velocity for Fluidization	m/s	YES	1.0e-6	>0
MINIMUM NUMBer of zones per Characteristic Length	_	YES	5	1≤ n ≤10

[#] DRZ – Disturbed Rock Zone; DDZ – Drill Damage Zone

* NO – can not be read from CAMDAT file; NR – not recommended to read from CAMDAT file; YES – can be read from CAMDAT file

8.1 The Input Control File

The input control file is an ASCII text file that defines the problem specification parameters. An example of an input control file is shown in **Figure 8-1**.

The parameters are grouped in categories in **Table 8-1** and in the input control file. In **Table 8-1**, the category name appears as a shaded row, with the parameters listed under the category. In the input control file, the category name *must* be followed by a record for each parameter within the category, in order. The categories themselves may appear in the input control file in any order, but the parameters within the category must appear in the order listed in **Table 8-1**. Optional categories are noted in the table; all other categories are required. Comment records may appear outside of the category definitions.

The start of the category is recognized by the first few letters of the category name. The bold letters of the category name in **Table 8-1** are enough to identify the category. All letters are converted to uppercase before any parsing is done, and leading blanks are ignored.

A record for each parameter within the category must follow, in the order listed in **Table 8-1**, directly after the category name. The parameter records are in free-format, as follows:

text : value

Any text before the colon is ignored. The text usually includes the parameter name for readability. (An equal sign, "=", may be substituted for the colon.)

The value field for a single numeric parameter may be one of the following:

Blank or "DEFAULT" (case is unimportant and leading spaces are ignored) to assign the default value to the parameter. The default values are listed in **Table 8-1**.

A specific value to assign to the parameter, in any valid FORTRAN format for a doubleprecision real number.

The material name and property name of the CAMDAT property that contains the value of the parameter. The material name and property name may be separated by a comma, a colon, an equal sign, or blanks. See Section 8.1 for more information on the input CAMDAT file. If the property is not present on the input CAMDAT file, the parameter is assigned its default value. This option is only available if an input CAMDAT file has been specified as described in Section 7.0 and if the parameter has "Yes" in the CAMDAT column in **Table 8-1**.

For a text parameter (e.g., Spherical/Cylindrical), the first non-blank character (case is unimportant) after the colon must be an allowable value for the text parameter, as listed in **Table 8-1**.

The *value* field for a parameter that expects two values (e.g., Repository radius, Growth) should contain the two values in any valid FORTRAN format for a double-precision real number or integer, as appropriate. The two values should be separated by a comma or blank(s).

Note that although the text in a parameter record is not processed in any way, the parameter records are also read when the parser is searching for the start of a category. Thus, if the first characters of the text of a parameter record are the same as the first few letters of any category name (case is unimportant and leading blanks are ignored), that category name must appear before the parameter record. For example, in the input control file shown in Figure 8-1, the text "Repository" appears as the first word in several parameter records. This would conflict with the category name "REPOSITORY" if this category appeared later in the file.

Comment lines may appear outside of the category definitions. That is, a comment record may not be inserted between the start of the category and the end of the parameter records for that category. It is suggested that the comment lines begin with a special character such as "!" to avoid problems with parsing.

з,

Figure 8-1 Example DRSPALL Input Control File

REPOSITORY		
Land Elevation	(m):	DRSPALL SURFELEV
Repository top	(m):	DRSPALL REPOSTOP
Total Thickness	(m) :	
DRZ Thickness	(m) :	
DRZ Permeability	(m^2) ·	DRSPALL DRZPERM
Outer Radius	(m):	1.9200E+01
Initial Gas Pressure	(m) :	DRSPALL REPIPRES
Far-Field In-Situ Stress	(m) :	
WASTE	<i>,</i> ,	
Porosity	(-):	DRSPALL REPIPOR
Permeability	(m^2):	
Forch Beta	(-):	
Biot Beta	(-):	
Poisoson Ratio	(-):	DRSPALL POISRAT
Cohesion	(Pa):	
Friction Angle	(deg):	
Tensile Strength	(Pa):	
Lt	(m) :	0.02
Particle Diameter	(m):	
Gas Viscosity	(Pa-s):	DRSPALL GASVISCO
MUD		
Density	(kg/m^3):	DRSPALL INITMDEN
Viscosity	(Pa-s):	
Wall Roughness Pipe	(n):	
Wall Roughness Annulus	(m) :	
Max Solids Vol. Frac.	(Pa-s):	
Solids Viscosity Exp.	(Pa-s):	
Solids (lbooble) inp.	(10.5)	
WELLBORE/DRILLING		
Bit Diameter	(m) :	DRSPALL BITDIAM
Pipe Diameter	(m) :	DRSPALL PIPEDIAM
Collar Diameter	(m):	DRSPALL COLRDIAM
Pipe Inside Diameter	(m) :	
Collar Length	(m):	DRSPALL COLRLNGT
Exit pipe Length	(m) :	DRSPALL EXITPLEN
Exit Pipe Diameter	(m) :	DRSPALL EXITPDIA
Drilling Rate	(m/s):	DRSPALL DRILRATE
Bit Above Repository (init.		DRSPALL INITBAR
Mud Pump Rate	(m^3/s):	DRSPALL MUDPRATE
Max Pump Pressure	(Pa):	
DDZ Thickness	(m):	DRSPALL DDZTHICK
DDZ Permeability	(m^2):	DRSPALL DDZPERM
Stop Drill Exit Vol Rate	(m^3/s):	DRSPALL DDZPERM DRSPALL STPDVOLR
Stop Pump Exit Vol Rate	(m^3/s):	DRSPALL STPPVOLR
Stop Drilling Time		DRSPALL STPDTIME
COMPUTATIONAL	10(0)	C
Spherical/Cylindrical	(S/C):	
Allow Fluidization	(Y/N):	
Max Run Time	(s):	1.0
Respository Cell Length	(m):	0.002 0.5, 1.01 1.0
radius, Growth rate	(m, -):	0.5, 1.01
Wellbore Cell Length	(m) :	1.0
wellbore Zone Growth Rate	(-):	1.01

٠,

First wellbore Zone Well Stability factor Repository Stability factor Mass Diffusion factor Momentum Diffusion factor	(-):	10 0.02 5.0 0.002 0.002	
VALIDATION	4		
Validation Test Case	(-):	4.2	
PARAMETERS			
Pi ·	(-):	REFCON	PI
Atmospheric Pressure	(Pa):	1.0170E+	05
Gravity	$(m/s^2):$		GRAVACC
Gas Constant	(J/kg K):	BLOWOUT	RGAS
Repository Temperature	(K):	BLOWOUT	TREPO
Water Compressibility	(1/Pa):	12.4e-10	
Waste Density	(kg/m^3):	BLOWOUT	RHOS
Salt Density	(kg/m^3):	2.1800E+	3
Shape Factor	(-):	DRSPALL	SHAPEFAC
Tensile Velocity	(m/s):	DEFAULT	
Bit Nozzle Number	(-):	DEFAULT	
Bit Nozzle Diameter	(m) :	DEFAULT	
Choke Efficiency	(-):	DEFAULT	
!Optional parameters Initial Cavity Radius Minimum Characteristic vel			
Minimum Number of zones pe	έι με (-):	5	

8.2 The Input CAMDAT File

The input CAMDAT file is a binary, sequential file used by many WIPP codes. A detailed description of the CAMDAT file format is given in Chapter 7 of the WIPP PA User's Manual for CAMDAT_LIB Version 1.22. The input CAMDAT file is optional, and is only available if it has been specified as described in Section 7.0.

The input control file may reference specific property values on the input CAMDAT file. A property is a single value that is associated with a material. ("Material" and "element block" are synonymous.) Both the material and the property are referenced by name. Properties may be assigned to the CAMDAT file with the MATSET program, described in the WIPP PA User's Manual for MATSET Version 9.10. DRSPALL limits the number of materials on the input CAMDAT file to 200.

The value of any property referenced by the input control file is printed to the output diagnostics file. If the referenced property does not exist on the input CAMDAT file, a message to that effect is printed to the output diagnostics file and the property is assigned its default value.

9.0 ERROR MESSAGES

The error messages that DRSPALL may generate are listed below, along with the cause of the error, and suggested action. The error messages are divided into three sections based on when the error may occur: while the user is specifying the file names, while reading the input control file, and during the simulation execution.

Unless otherwise noted, error messages are written to the output diagnostics file, described in Section 10.1. The messages below are of the following type:

- Fatal errors cause the program to abort. Fatal error messages are written to the diagnostics file and to the screen, although the messages may differ slightly.
- Other errors indicate problems that should be addressed. These errors usually lead to a fatal error later in processing.
- Warnings indicate possible problems. They do not cause the program to abort.
- Information-only messages are not errors, and thus only a few of these messages are listed below. The messages listed below are those that may be confused with error messages or those that provide information that may be especially useful in detecting problems.

9.1 File Assignment Errors

The errors in this section concern the DRSPALL input/output files that the user specifies at the start of execution. See Section 7.0 for information on specifying files.

FATAL ERROR – Incorrect file assignments

This fatal error occurs when the user does not specify the files correctly. Common causes are specifying an input file that does not exist or not specifying a required file.

ERROR: must specify CDB or test output

This fatal error occurs when the user does not specify either the output text files or the output CAMDAT file.

FATAL ERROR - PROBLEM WITH INPUT CDB

This fatal error occurs when an input CAMDAT file is specified, but it is not a valid CAMDAT file.

τ,

9.2 Input Control File Errors

The errors in this section may occur while DRSPALL is processing the input control file. See Section 8.0 for information on the input control file and the input CAMDAT file. Although DRSPALL checks for errors as the input control file is read, the user must take care to correctly define the parameters. In particular, missing or misplaced parameter records or values in an invalid FORTRAN format may cause DRSPALL to abort without an explicit error message. The output diagnostics file, described in Section 10.1, contains a listing of all the parameters that were set by the input control file, including all the parameters read from the CAMDAT file. If the user suspects that there are problems with the input parameters, this file should be examined.

FATAL ERROR - IN DBIELBK

This fatal error indicates that the input CAMDAT file is invalid. One possible cause is that a CAMDAT property is requested, but no input CAMDAT file is specified.

FATAL ERROR - OVER 200 EL BLKS IN DBVALUE

This fatal error occurs if the input CAMDAT file contains more than 200 materials (element blocks). This is a hard-coded limit in DRSPALL.

FATAL ERROR - OVER 50 PROPERTIES IN DBVALUE

This fatal error occurs if over 50 properties are requested from the input CAMDAT file. No more than 50 input parameters in the input control file may reference a CAMDAT property. This error should never occur because there are less than 50 input parameters that allow CAMDAT properties as values.

ERROR: Unable to find Keyword category

Screen message: ERROR: Unable to find Keyword

This fatal error occurs when the input control file does not contain the category name indicated by *category* (REPOSITORY, WASTE, MUD, WELL, COMPUTATIONAL).

Default parameter values will be used

This information-only message indicates that the input control file does not contain the Parameters and Constants category, and that the default parameters will be used for this category.

ERROR: Could not find property varname

Screen message: ERROR: Could not find property

The fatal error occurs when the *varname* parameter record indicates that its value is a CAMDAT property, but the record contains a material name, but no property name. Note that the parameter name as indicated in this document may not exactly match *varname*.

۰,

ERROR: Could not find data on input record for varname Screen message: ERROR: Could not find data on input record

The fatal error occurs when the *varname* parameter record does not contain a ":" (or "=") and a value. Note that the parameter name as indicated in this document may not exactly match *varname*.

ERROR: Could not find delimiter for variable=varname Screen message: ERROR: Could not find delimiter for variable

This fatal error occurs when the *varname* text parameter record does not contain a ":" or "=" to delimit the expected text value. Note that the parameter name as indicated in this document may not exactly match *varname*.

FROM CDB, material property : value

This information-only message indicates that the indicated *value* was read from the CAMDAT property. The property was requested by listing *material* and *property* as the value on a parameter record.

PROPNAM property NOT FOUND!! SET TO DEFAULT: value

This information-only message indicates that the indicated CAMDAT property was not found on the input CAMDAT file. The property was requested by listing the material and *property* as the value on a parameter record. The material or property may not be defined on the CAMDAT file, or the property may not be defined in the indicated material. If the property was not found, the parameter is set to the default *value* shown. This message does not cause DRSPALL to abort, but it may indicate a problem with the input CAMDAT file or the input control file.

ERROR: varname=value Outside parameter bounds, (minval,maxval)

This error occurs when the *varname* input parameter is outside the proscribed range. The *value* for the parameter, as indicated by the input control file, is listed. The range for the input parameter is listed in **Table 8-1**, but the *minval* to *maxval* range is the range checked by DRSPALL. Note that the parameter name as indicated in this document may not exactly match *varname*. Also note that some ranges listed in the table may not be checked by DRSPALL. This error will trigger a fatal error once the ranges of all input parameters are checked.

ERROR: Parameter Bounds Exceeded

This fatal error occurs if the range of any input parameter is outside its bounds. If this occurs, an error message identifying the parameter(s) will precede this error message in the output diagnostics file.

75

9.3 Execution Errors

The errors in this section may occur after DRSPALL has processed the input control file. Since the simulation is controlled by the input parameters, the user should inspect the input parameters if the simulation does not proceed as expected. The output diagnostics file, described in Section 10.1, contains a listing of all the input parameters.

FATAL ERROR – PROBLEM WITH OUTPUT CDB FATAL ERROR – PROBLEM WITH DBOQAREC FATAL ERROR – PROBLEM WITH DBOHEAD

These fatal errors occur when the output CAMDAT file cannot be opened or written. This may occur when the user does not have write access or the disk is full.

WARN: wellgasvol=', wellgasVol(i)

This warning message is printed when the well gas volume is less than zero.

WARNING: Viscous choking(1 or 2) at i

This warning message is printed when

(1) The well solids fraction is greater than maximum allowed, or

(2) The viscous term is greater than the acceleration a term, usually due to oscillation in the velocity flow.

₹.

10.0 DESCRIPTION OF OUTPUT FILES

10.1 The Output Diagnostics File

The output diagnostics file contains a listing of the input control file, followed by a listing of the actual parameter values as they will be used by DRSPALL. It also lists the value of any CAMDAT property that was read from the input CAMDAT file. If the user suspects that there are problems with the input parameters, this file should be examined. The user should examine the listing of the actual parameter values, rather than the listing of the input control file.

10.2 The Output CAMDAT File

The output CAMDAT file is a binary, sequential file used by many WIPP codes. A detailed description of the CAMDAT file format is given in Chapter 7 of the WIPP PA User's Manual for CAMDAT_LIB Version 1.22. This document only mentions the CAMDAT entities that are specific to the DRSPALL program.

10.2.1 Output CAMDAT Materials and Mesh

DRSPALL defines a mesh on the output CAMDAT file. The mesh consists of a set of elements. Each element must be contained within a named material. ("Material" and "element block" are synonymous.) DRSPALL defines three materials that contain elements: the repository, the wellbore inside the drill pipe, and the wellbore outside the drill pipe. If a material does not contain any elements, that material may only be used to contain property values. The output CAMDAT file generated by DRSPALL copies zero-element materials (with their properties) from the input CAMDAT file, if one is specified. DRSPALL adds one 0-element material (DATAUSED) that contains the parameters as read by DRSPALL.

 Table 10-1 describes the materials, with their elements, that DRSPALL defines on the output CAMDAT file.

Material Name	Description of Material and its Elements	
DATAUSED	AUSED Contains properties with parameters as read by DRSPALL.	
REPOS	REPOS Contains an element for each repository cell.	
DOWN_WB Contains an element for each wellbore cell inside the drill pipe.		
UP_WB Contains an element for each wellbore cell in the annulus ou drill pipe.		
xxxxxx	Contains properties copied from input CDB where the material names <i>xxxxxx</i> are defined on the input CDB	

Table 10-1 CAMDAT Materials and Elements

9. .

10.2.2 Output CAMDAT Properties

Table 10-2 describes the properties that DRSPALL writes to the output CAMDAT file. The properties are all contained within the DRSPALL material. The values of the properties are copied from the appropriate DRSPALL input parameter.

If an input CAMDAT file is specified (as described in Section 7.0), the properties from the input CAMDAT file will be copied to the output CAMDAT file. All input parameters used by DRSPALL are echoed to material block DATAUSED. Input properties values contained in input material blocks remain unchanged.

Property Name	DRSPALL input parameter		
SURFELEV	Land elevation		
REPOSTOP	Repository top		
REPOSTCK	Total thickness		
DRZTCK	DRZ thickness		
DRZPERM	DRZ permeability		
REPOTRAD	Outer radius		
REPIPRES	Initial gas pressure		
FFPORPRS	Far-field Pore Pressure		
FFSTRESS	Far-field In-Situ Stress		
REPIPOR	Repository initial porosity		
REPIPERM	Repository initial permeability		
FRCHBETA	Forchheimer beta		
BIOTBETA	Biot beta		
POISSRAT	Poisson's ratio		
COHESION	Cohesion		
FRICTANG	Friction angle		
TENSLSTR	Tensile strength		
CHARLEN	Characteristic failure length		
PARTDIAM	Particle diameter		
GASBSDEN	Gas base density		
GASVISCO	Gas viscosity		
INITMDEN	Initial mud density		
MUDVISCO	Mud viscosity		
PIPEROUG	Pipe roughness		
ANNUROUG	Annulus roughness		
MUDSOLMX	Max mud solids vol. Fraction		
MUDSOLVE	Mud solids viscosity exponent		
BITDIAM	Bit diameter		
PIPEDIAM	Pipe diameter		
COLRDIAM	Collar diameter		

Information Only

Table 10-2 CAMDAT Output Properties

9;

z

5

Property Name	DRSPALL input parameter		
PIPEID	Pipe inside diameter		
COLRLNGT	Collar length		
EXITPLEN	Exit pipe length		
EXITPDIA	Exit pipe diameter		
DRILRATE	Drilling rate		
BITABOV	Initial bit above repository		
MUDPRATE	Mud pump rate		
MAXPPRES	Mud pump pressure		
DDZTHICK	DDZ thickness		
DDZPERM	DDZ permeability		
STPDVOLR	Stop drilling exit volume rate		
STPPVOLR	Stop pumping exit volume rate		
STPDTIME	Stop drilling time		
REPODR	Initial repository cell length		
REPODDR	Repository cell growth rate		
WELLDZ	Initial wellbore cell length		
WELLDDZ	Well cell growth Rate		
GEOMEXP	Geometry exponent		
ALLOWFLD	Fluidization flag		
WELLSTAB	Well stability factor		
REPOSTAB	Repository stability factor		
MASSDIFF	Mass diffusion factor		
MOMDIFF	Momentum diffusion factor		
VALIDTC	Validation test case flag		
PI	Pi		
REFPRES	Atmospheric pressure		
GRAVACC	Gravity		
RGAS	Gas constant		
TREPO	Repository temperature		
H2OCOMP	Water compressibility		
WASTDENS	Waste density		
SALTDENS	Salt density		
SHAPFAC	Shape factor		
TENSVEL	Tensile velocity		
BITNZNO	Bit nozzle number		
BITNZDIA	Bit nozzle diameter		
CHOKEFF	Choke efficiency		
CAVRAD0	Initial cavity radius		
MINCHVEL	Minimum characteristic velocity		
MINNUMLT	Minimum number of zones per		
	characteristic length		

÷.

10.2.3 Output CAMDAT Time Steps and Variables

DRSPALL outputs information to the output CAMDAT file at sequential "time steps". Each time step contains the simulation time, in seconds, and the history variables defined by DRSPALL. A history variable has a single value for each time. Certain time steps may contain the element variables defined by DRSPALL, as well as the history variables. An element variable has a value for each element.

The time at which each time step is output is determined by DRSPALL. DRSPALL outputs a new time step when a certain period of time has passed, and when wellbore interface velocity changes by more than 20%.

Table 10-3 describes the history variables that DRSPALL writes to the output CAMDAT file.

	History Variable Name	Description	
1	PUMPRS	Pump pressure	
2	BOTPRS	Well bottom pressure	
3	CAVPRS	Cavity pressure	
4	DRILLRAD	Equivalent Drilled radius	
5	CAVRAD	Equivalent Cavity radius	
6	TENSRAD	Equivalent Tensile radius	
7	CUTRAD	Maximum Equivalent Cuttings radius (constant)	
8	WBSUPVEL	Waste boundary pore velocity	
9	FLUIDVEL	Fluidization velocity	
10	MUDEJVEL	Mud ejection velocity	
11	WASWELL	Waste in Well	
12	WASEJCT	Waste ejected at surface	
13	CUTMASMX	Maximum Cuttings mass	
14	GASINJ	Gas injected into well	
15	WELLGAS	Gas in Well	
16	GASEJCT	Gas ejected at surface	
17	GASPOSN	Gas position in well	
18	WASPOSN	Waste position in well	
19	CPUTIME	CPU time	
20	RUNSTEP	Run step index	
21	VOLSTORE	Volume failed/drilled material in storage(released from	
		repository but not in well)	
22	GASTORE	Gas mass in temporary storage	
23	WASTORE	Waste mass in temporary storage	
24	WASINJ	Waste injected into well	

Table 10-3 CAMDAT History Variables

ы.

	History Variable Name	Description	
25	GASCAV	Cavity gas mass	
26	SWELLGAS	Sum of well gas mass/cell	
27	SREPOGAS	Sum repository gas mass/cell	
28	GASTOTAL	(16)+(22)+(25)+(26)+(27)	
29	GASFROMW	Total gas from waste	
30	CUTMASS	Mass of cuttings	
31	SPLMASS	Mass of spalled material	
32	TOTMASS	Total mass of material removed	
33	CUTVOLEQ	Equivalent uncompacted cuttings volume	
34	SPLVOLEQ	Equivalent uncompacted spall volume	
35	TOTVOLEQ	Equivalent uncompacted total volume	
36	CUTRUVOL	True cuttings volume	
37	CUTRUMAS	True cutting mass	
38	PUMPRATE	Mud pump rate	
39	SHEARRAD	Maximum radius of shear failure	
40	NOZLVEL	Nozzle fluid velocity	
41	WBUPVEL	Fluid velocity near well bottom	
42	FLUIDTIM	Characteristic fluidization time	
43	SWELLWAS	Sum well waste mass /cell	
44	WASFROMR	Total waste mass from repository	
45	WASTOTAL	Total waste in system (removed from repository)	
46	Pitgain = Σ ($\Delta m \rho - R_{\rm p} \Delta t$), Δm = ejected mud mass; ρ		
47	MUDEJCT	Accumulated mud mass ejected at surface	
48	SPLVOL2	Incremental equivalent uncompacted spalled volume	
49	SPLMAS2	Incremental equivalent spalled mass	
50	BEDDEPTH	Bed depth TENSRAD-CAVRAD	
51	FORCHRAT	Forchheimer test ratio	

Table 10-4 describes the element variables that DRSPALL writes to the output CAMDAT file. Each element variable is only defined for certain materials, as indicated in the "Where Variable Defined" column in the table. (The materials and elements are described in 10.2.1). Variables defined for the "Repository" are only valid for the elements in the REPOS material; variables defined for the "Wellbore" are only valid for the elements in the DOWN_WP and UP_WB materials.

а. 1 Ť

	Element	Where Variable	Description
	Variable Name	Defined	Description
1	POREPRS	Repository	Repository pressure
2	RADEFSTR	Repository	Radial effective stress
3	TANEFSTR	Repository	Tangential effective stress
4	POREVEL	Repository	Pore velocity
5	RADELSTR	Repository	Radial elastic stress
6	TANELSTR	Repository	Tangential elastic stress
7	RADSPSTR	Repository	Radial seepage stress
8	TANSPSTR	Repository	Tangential seepage stress
9	FLUDSTRT	Repository	Fluidization start time
10	FLUDSTOP	Repository	Fluidization stop time
11	FAILSTRT	Repository	Failure start time
12	SUPRVEL	Repository	Superficial velocity
13	WELLPRS	Wellbore	Pressure
14	WELLVEL	Wellbore	Mixture velocity
15	WELLGSMS	Wellbore	Gas mass
16	WELLWSMS	Wellbore	Waste mass
17	WELLRHO	Wellbore	Mixture density
18	WELLWSVF	Wellbore	Waste volume fraction
19	WELLGSVF	Wellbore	Gas volume fraction
20	WELLSAVF	Wellbore	Salt volume fraction
21	WELLWSMF	Wellbore	Waste mass fraction
22	WELLGSMF	Wellbore	Gas mass fraction
23	WELLMDMF	Wellbore	Mud mass fraction
24	WELLVOL	Wellbore	Cell volume
25	COORD	Repository,	Repository and well coordinate
23	COORD	Wellbore	positions (center of cell)

Table 10-4 CAMDAT Element Variables

Ĵ,

11.0 REFERENCES

Hansen, F.D., Pfeifle, T.W., Lord, D.L. 2003. Parameter Justification Report for DRSPALL. Sandia National Laboratories. Sandia WIPP Central Files ERMS# 531057.

OpenVMS DCL Dictionary. May, 1993. Digital Equipment Corporation, Maynard, MA.

- Rechard, R.P., Gilkey, A.P., Iuzzolino, H.J., Rudeen, D.K., Byle, K.A., 1993. Programmer's Manual for CAMCON: Compliance Assessment Methodology Controller. SAND90-1984. Sandia National Laboratories, Albuquerque, NM.
- WIPP PA Design Document for DRSPALL Version 1.00 (document version 1.10). Sandia National Laboratories. Sandia WIPP Central Files ERMS# 529878.
- WIPP PA Requirements Document for DRSPALL Version 1.00 (document version 1.20). Sandia National Laboratories. Sandia WIPP Central Files ERMS# 531278. Sandia National Laboratories, Albuquerque, NM.
- WIPP PA User's Manual for CAMDAT_LIB Version 1.22. Sandia National Laboratories. Sandia WIPP Central Files WPO# 27727.
- WIPP PA User's Manual for MATSET Version 9.01. Sandia National Laboratories. Sandia WIPP Central Files ERMS# 519736.
- WIPP PA Verification and Validation Plan and Validation Document for DRSPALL Version 1.00. Sandia National Laboratories. Sandia WIPP Central Files ERMS# 524782.